Intragenic recombination between two non-functional semi-dwarf 1 alleles produced a functional SD1 allele in a tall recombinant inbred line in rice
نویسندگان
چکیده
Intragenic recombination is one of the most important sources of genetic variability. In our previous study, RI92 a tall line (160 cm of plant height) was observed in the cross progeny between two semi-dwarf indica cultivars Zhenshan 97 and Minghui 63. Genome-wide genotyping and sequencing indicated that the genome constitution of RI92 was completely from both parents. Bulk segregant analysis in a BC3F2 population revealed that "green revolution gene" semi-dwarf 1 (sd1) was most likely the gene controlling the tall plant height in RI92. Sequencing analysis of SD1 revealed that an intragenic recombination occurred between two parental non-functional sd1 alleles and generated a functional SD1 in RI92. Four-fold high recombination rate in SD1 located bins to the genome-wide average was observed in two RIL populations, indicating recombination hotspot in the SD1 region. Intragenic recombination creates new alleles in the progeny distinct from parental alleles and diversifies natural variation.
منابع مشابه
Identification of alternate dwarfing gene sources to widely used Dee-Gee- Woo-Gen allele of sd1 gene by molecular and biochemical assays in rice (Oryza sativa L.)
After the success of IR8 and TN1, breeders depended heavily on these two rice cultivars for source of short stature led to the narrow genetic base to majority of present day rice varieties, as far as sd1 (semi-dwarf1) gene is concerned. In addition, analysis of genetic lineage of the majority of the cultivated rice varieties in tropical Asia reveals that sd1 from DGWG (Dee-GeeWoo-Gen) is the ma...
متن کاملEfficacy of microarray profiling data combined with QTL mapping for the identification of a QTL gene controlling the initial growth rate in rice.
Seedling vigor, which is controlled by many quantitative trait loci (QTLs), is one of several important agronomic traits for direct-seedling rice systems. However, isolating these QTL genes is laborious and expensive. Here, we combined QTL mapping and microarray profiling to identify QTL genes for seedling vigor. By performing QTL mapping using 82 backcross inbred lines (BILs) of the Koshihikar...
متن کاملDrought susceptibility of modern rice varieties: an effect of linkage of drought tolerance with undesirable traits
Green Revolution (GR) rice varieties are high yielding but typically drought sensitive. This is partly due to the tight linkage between the loci governing plant height and drought tolerance. This linkage is illustrated here through characterization of qDTY1.1, a QTL for grain yield under drought that co-segregates with the GR gene sd1 for semi-dwarf plant height. We report that the loss of the ...
متن کاملMapping QTLs for Agronomic Traits in Rice Under Water Stress Condition Using Iranian Recombinant Inbred Lines Population
In the current study, a set of 96 recombinant inbred lines (RIL) at F8, derived from a cross between two varieties, Anbarbu (sensitive to drought stress) and Sepidroud (tolerant to drought stress) were used. The experiment was performed at Gonbad Kavous located in the Golestan province of Iran in 2010–2011 using two augmented designs at normal and stress conditions, separately. The RIL populati...
متن کاملPaleo-Green Revolution for rice.
A central element of the Green Revolution was the widespread adoption of semidwarf rice cultivars (SRCs) that more than doubled worldwide rice production (1). The high-yield potentials of modern SRCs are attributed primarily to their improved harvest index, lodging resistance, and responsiveness to high inputs (primarily nitrogen and water) (1–3), contributing to their adoption in irrigated are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017